Understanding the potential energy surface of CO oxidation with O, and Au atoms utilizing DFT and AIMD
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Introduction
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DFT geometry optimizations. Frequency, IRC and AIMD calculations were g -100 k5 _

performed for the binary [AuO;]% complexes, and ternary [O,AuCO]¢ $ 120 @ -100

complexes, for charge states q=1,0, and -1. The results reported here are for 5-140 5-120 -102.12

B3LYP hybrid functional and mixed SDD/6-311+G(3df) basis set for Au/C,0 ¢ Au,CO,°0,
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Spin-states: In general, for each complex there was a clearly identifiable “best” Reaction coordinate S , , -

spin-state, giving a lower energy than all others, as noted in the tables below. AIMD snapshots of cationic singlet reaction starting from transition state (*TS,) AIMD snapshots of anionic singlet reaction starting from transition state (TS,)
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