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The Writing’s on the Snow: Determining Snowmelt Onset and Early Snowmelt Events in

High Latitude Drainage Basins Using Passive Microwave Remote Sensing
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Melt Onset and Early Showmelt Events ﬂnnual Variation of Melt Onset and Early Snhowmelt Events

Melt Onset: Start of sustained snowmelt in the spring Hypothesis: melt events alter snowpack characteristics, affecting melt duration and peak discharge. Trends in melt
Early Snowmelt Events: Short-term periods of melt occurring before full melt onset onset timing and occurrence of melt events may be indicators of climate change in high latitude drainage basins.
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Figure 1. Brightness temperatures (T,) and diurnal amplitude variation (DAV)
(from AMSR-E data) for 2009 for pixel near the mouth of the Stewart River.
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How do you detect
melt?

Passive microwave AMSR-E
brightness temperature (T,)
data detect melt in the
snowpack as the emissivity

of wet snow versus dry snow .
Is distinguishable. Using ’ |
thresholds for T, and diurnal
DAV (Ramage et al. 2006;
Apgar et al. 2007) melt onset
and end melt-refreeze period .
can be determined. A |
similar, modified algorithm

detects early melt. == | ater Melt Onset
Earlier Melt Onset
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